Chem. Ber. 105, 770-783 (1972)

Henri Brunner und Wolfgang Anton Herrmann

Optisch aktive Übergangsmetall-Komplexe, X¹⁾

Carbonyl-Komplexe von Chrom(0), Molybdän(0) und Wolfram(0) mit Schiffschen Basen des Pyridin-carbaldehyds-(2)

Aus dem Fachbereich Chemie der Universität Regensburg

(Eingegangen am 8. Oktober 1971)

Es wird über Darstellungsmethoden, Eigenschaften, Infrarot-, Elektronen- und Massenspektren der Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-Komplexe von Chrom(0), Molybdän(0) und Wolfram(0) 7-9 berichtet. Die Umsetzung von 7-9 mit Triphenylphosphin führt zu den Tricarbonyl-triphenylphosphin-(pyridin-carbaldehyd-(2)-imin)-Komplexen 11-13. Mit Hilfe der Kernresonanzspektroskopie konnte nachgewiesen werden, daß der Triphenylphosphin-Ligand in *cis*-Position zum Azomethin-Chelatliganden eintritt. Dabei bilden sich asymmetrische oktaedrische Komplexe, die in enantiomeren Formen auftreten können.

Optically Active Transition Metal Complexes, X¹) Carbonyl Complexes of Chromium(0), Molybdenum(0) and Tungsten(0) with Schiff Bases of Pyridine-2-carbaldehyde

Methods of preparation, properties, infrared, electron and mass spectra of tetracarbonyl-(pyridine-2-carbaldehyde imine) complexes of chromium(0), molybdenum(0) and tungsten(0) 7-9 are reported. 7-9 react with triphenylphosphine to form the tricarbonyl-triphenylphosphine-(pyridine-2-carbaldehyde imine) complexes 11-13. It was demonstrated by n.m.r. spectroscopy, that the triphenylphosphine ligand enters the *cis*-position to the azomethine-chelate ligand. In this case asymmetrical octahedral complexes are formed, which may exist in enantiomeric isomers.

In früheren Arbeiten beschrieben wir optisch aktive Übergangsmetall-Verbindungen 1, in denen vier verschiedene Liganden annähernd tetraedrisch um die Metallatome Mn und Fe angeordnet sind^{2,3)}. Einer der Liganden war dabei in allen Fällen der π -gebundene Cyclopentadienylrest. Oktaedrische Komplexe treten in enantiomeren Paaren auf, wenn drei verschiedene Liganden L₁, L₂ und L₃ in *cis*-Stellung zueinander stehen. Die stereochemische Einheit der drei gleichartigen Liganden L in **2** entspricht dabei dem Cyclopentadienylrest in 1.

¹⁾ IX. Mitteil.: H. Brunner und H.-D. Schindler, Z. Naturforsch., im Druck.

H. Brunner, Angew. Chem. 81, 395 (1969); Angew. Chem. internat. Edit. 8, 382 (1969).
Übersichtsartikel: H. Brunner, Angew. Chem. 83, 274 (1971); Angew. Chem. internat. Edit. 10, 249 (1971).

Für die Darstellung optisch aktiver oktaedrischer Verbindungen des Typs $cis-(L)_3ML_1L_2L_3$ (2) bot sich ausgehend von den Hexacarbonylen von Chrom, Molybdän und Wolfram (4-6) folgendes Konzept an: Substitution von zwei CO-Gruppen gegen unsymmetrische Chelatliganden L_1L_2 , die zwangsläufig cis-Positionen besetzen, und Einführung eines Liganden L_3 in cis-Stellung zu L_1L_2 . Als unsymmetrische Chelatliganden wurden zunächst die Schiffschen Basen des Pyridin-carbaldehyds-(2) 3a - e und als Ligand L_3 Triphenylphosphin verwendet. In der vorliegenden Arbeit wird über Darstellung, Eigenschaften und spektroskopische Untersuchungen der Komplexe 7-9 sowie über die Stereochemie der Umsetzung von 7b, 8b und 9b mit Triphenylphosphin berichtet.

A. Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe

Über Kondensationsprodukte heterocyclischer Aldehyde mit Aminen und Hydrazinen wurde bereits vor über 50 Jahren berichtet⁴⁾. Obwohl das Koordinationsverhalten von Azomethin-Derivaten gegenüber positiv geladenen Metall-Ionen, wie Cr³⁺, Fe²⁺, Co³⁺ und Cu²⁺, in der Folgezeit intensiv bearbeitet wurde⁵⁻⁷⁾, sind Komplexverbindungen von Schiffschen Basen des Pyridin-carbaldehyds-(2) mit Metallcarbonylen bisher nicht bekannt. Lediglich die beiden geometrischen Isomeren von Pyridin-carbaldehyd-(2)-[pyridyl-(2)-hydrazon] ("paphy") und ihre Komplexbildungsfähigkeit wurden eingehender untersucht⁸⁻¹²⁾. Die Pyridin-carbaldehyd-(2)-imine **3a**-e sollten sich als zweizähnige Liganden L₁L₂ für eine Komplexbildung mit Metallcarbonylen eignen, sofern sie in der energetisch begünstigten (*cis*)-*anti*-Konfiguration vorliegen.

Darstellung und Eigenschaften

Die Umsetzung der Hexacarbonyle 4-6 mit den Schiffschen Basen des Pyridincarbaldehyds-(2) 3a-d in Benzol führt bei Bestrahlung nach Gl. (1) unter Eli-

⁴⁾ G. H. Lénárt, Liebigs Ann. Chem. 410, 95 (1915).

⁵⁾ R. H. Holm, G. W. Everett und A. Chakravorty, Progr. Inorg. Chem. 7, 83 (1966).

⁶⁾ F. Calderazzo, C. Floriani, R. Henzi und F. L'Eplattenier, J. chem. Soc. [London] A 1969, 1378.

⁷⁾ C. M. Harries und E. D. McKenzie, Nature [London] 196, 670 (1962); J. chem. Soc. [London] A 1969, 746.

⁸⁾ J. G. Dunn und D. A. Edwards, Inorg. nuclear Chem. Letters 5, 539 (1969).

⁹⁾ A. T. Casey und R. A. Horsley, Austral. J. Chem. 22, 2309 (1969).

¹⁰⁾ C. F. Bell und D. R. Rose, J. chem. Soc. [London] A 1969, 819.

¹¹⁾ R. S. L. Bruce, M. K. Cooper und B. G. McGrath, Chem. Commun. 1970, 69.

¹²⁾ M. K. Cooper, Austral. J. Chem. 22, 1549 (1969).

minierung von 200% Kohlenmonoxid zu den stark farbigen Tetracarbonyl-(pyridincarbaldehyd-(2)-imin)-metall(0)-Komplexen 7-9:

Alle Reaktionen verlaufen mit Ausbeuten über 80% (Tab. 2) und führen, wie osmometrische Molekulargewichtsbestimmungen zeigen (Tab. 1), ausschließlich zu den monomeren Produkten 7–9. Die den Verbindungen 7–9 zukommende allgemeine Formel (CO)₄M(L₁L₂) ist auch durch Analysenwerte (Tab. 1) sowie massenspektroskopisch (Tab. 5) belegt.

Wenngleich für Pyridin-aldoxim-(2) (3e) mit Hilfe verschiedener, voneinander unabhängiger Methoden (*cis*)-*anti*-Konfiguration nachgewiesen wurde¹³⁻¹⁶), führt seine Bestrahlung in Gegenwart von Metallcarbonylen überwiegend zu Zersetzungsprodukten. Wir erklären diesen Befund damit, daß der Ligand einer auch an anderen Oximen beobachteten photochemischen *anti-amphi*-Umlagerung¹⁷) unterliegt; daneben dürfte das Oxim eine photoinduzierte Beckmann-Umlagerung erleiden¹⁸). In beiden Fällen kommt es zur Aufhebung der für die Chelatbildung erforderlichen Struktureinheit.

Es zeigte sich jedoch, daß der Komplex 8e in guten Ausbeuten entsteht, wenn man Molybdänhexacarbonyl (5) und Pyridin-aldoxim-(2) (3e) in einem siedenden Gemisch aus Äthanol und Norbornadien (4:1) umsetzt. Offensichtlich bildet sich primär der früher beschriebene Norbornadien-Komplex 10^{19, 20)}, der dann durch den Angriff des zweizähnigen Liganden unter Abspaltung des Diolefins in den luftstabilen, intensiv blaugrünen Komplex 8e übergeht:

18) J. H. Amin und P. deMayo, Tetrahedron Letters [London] 24, 1585 (1963).

¹³⁾ S. Ginsberg und I. B. Wilson, J. Amer. chem. Soc. 79, 481 (1957).

¹⁴⁾ S. E. Forman, J. org. Chemistry 29, 3323 (1964).

¹⁵⁾ D. Hadźi und L. Premru, Spectrochim. Acta 23A, 35 (1967).

¹⁶⁾ F. Holmes, G. Lees und A. E. Underhill, J. chem. Soc. [London] A 1971, 999.

¹⁷⁾ O. L. Brady und G. P. McHugh, J. chem. Soc. [London] **125**, 547 (1924).

¹⁹⁾ R. Pettit, J. Amer. chem. Soc. 81, 1266 (1959).

²⁰⁾ M. A. Bennett, L. Pratt und G. Wilkinson, J. chem. Soc. [London] 1961, 2037.

Die diamagnetischen Komplexe 7-9 kristallisieren in großflächigen Tafeln oder langen Nadeln und zeigen in dieser Form kräftigen Metallglanz. Weitere Eigenschaften sind in Tab. 2 zusammengestellt.

Infrarot-Spektren

Wie nach gruppentheoretischen Berechnungen für Moleküle der allgemeinen Formel (CO)₄M(L₁L₂) (Punktgruppe C_s) zu erwarten ist ^{21, 22}), erscheinen in den IR-Spektren der neu dargestellten Komplexe alle vier möglichen CO-Streckschwingungen (Tab. 3). Die Lagen und Intensitäten der Banden stimmen mit denen analog gebauter Komplexe, wie etwa (CO)₄Mdipy^{23, 24}) oder (CO)₄Mphen²⁵), überein (dipy = 2.2'-Dipyridyl; phen = 1.10-Phenanthrolin).

Die über die Stickstoffatome erfolgende Bindung der demnach notwendigerweise in (cis)-anti-Konfiguration vorliegenden Schiffschen Basen 3a - e an das Zentralmetall sollte eine Erniedrigung der Bindungsordnung innerhalb der Azomethin-Gruppierung zur Folge haben. Das äußert sich in langwelligen Verschiebungen der C=N-Valenz-frequenzen in den IR-Spektren der Komplexe 7-9 um durchschnittlich 35/cm gegenüber den freien Liganden (Tab. 3). Die Intensitäten dieser Banden sind infolge Komplexbildung stark abgeschwächt.

Elektronenspektren

(hierzu Abbild. 1)

Die bemerkenswerteste Eigenschaft der neuen Verbindungen 7-9 ist ihre besonders in Lösung hervortretende starke Farbigkeit. Die molaren Extinktionskoeffizienten ε_1 und ε_2 der Lichtabsorption im sichtbaren Spektralbereich nehmen in den Maxima Werte bis zu 9500 [l/Mol·cm] an (Tab. 4). Darüber hinaus beobachtet man starke Solvatochromie-Effekte: Der Übergang vom unpolaren Lösungsmittel n-Hexan zum polaren Lösungsmittel Dimethylsulfoxid ergibt hypsochrome Verschiebungen der farbbestimmenden Übergänge um Beträge bis zu $\Delta v_1 = 4000/\text{cm}$ (vgl. Abbild. 1). Dagegen erfahren die kürzerwellig liegenden Absorptionsmaxima dabei kaum Frequenzänderungen.

²¹⁾ F. A. Cotton und C. S. Kraihanzel, J. Amer. chem. Soc. 84, 4437 (1962).

²²⁾ F. A. Cotton und C. S. Kraihanzel, Inorg. Chem. 2, 533 (1963).

²³⁾ E. W. Abel, M. A. Bennett und G. Wilkinson, J. chem. Soc. [London] 1959, 2323.

²⁴⁾ M. H. B. Stiddard, J. chem. Soc. [London] 1962, 4712.

²⁵⁾ D. G. Hendricker und T. E. Reed, Inorg. Chem. 8, 685 (1969).

Abbild. 1. Elektronenspektren der Verbindung 8b in Abhängigkeit vom Lösungsmittel

Neben den großen solvatochromen Verschiebungen sind die durch Variation der Substituenten R hervorgerufenen Lageänderungen Δv_1 nur gering. – Zwischen einander entsprechenden Komplexen des Chroms und des Molybdäns bestehen bezüglich der Anregungsenergien Differenzen von 2.7 bis 4.3 kcal/Mol, während sich beim Übergang von Molybdän zu Wolfram als Zentralmetall nur Energieänderungen von maximal 2.3 kcal/Mol ergeben.

Massenspektren

Beim Zerfall der Komplexe 7–9 im Massenspektrometer werden zunächst vorwiegend die CO-Gruppen abgespalten. Die zugehörige Fragmentierungssequenz des Molekül-Ions $[M]^+$ ist in fast allen Spektren vollständig (Tab. 5). Das Bruchstück $[M]^+ - 4$ CO tritt durchwegs mit außerordentlich hoher Intensität auf.

Anschließend erfolgt der schrittweise Abbau der noch zweizähnig an das Zentralmetall gebundenen Schiffschen Base. Nachstehendes Zerfallsschema ist durch das Auftreten der entsprechenden Ionen gesichert:

Danach erfolgt zunächst aus I die Abspaltung der Gruppe R unter Bildung des Fragment-Ions II. Ist $R = i-C_3H_7$, so verliert I primär die beiden Methylgruppen gemeinsam mit dem H-Atom der CH-Gruppe, was zu intensiven Peaks der jeweiligen Massenzahlen $[M^*]^+ - 31$ führt. Unter HCN-Eliminierung wird im nächsten Schritt

von den beiden Verknüpfungsstellen zwischen Ligand und Zentralmetall vorläufig nur die $M-N^1$ -Bindung gelöst. Erst dann erfolgt unter Entfernung von C₅H₄N aus III auch der Bruch der Bindung $M-N^2$.

Die Massenspektren der neuen Komplexe 7–9 legen nahe, daß in den Bindungen $M-N^1$ sowie $M-N^2$ kaum d_{π} - p_{π} -Rückbindungsanteile enthalten sind. Es läßt sich nämlich keinerlei Konkurrenz zwischen CO-Abspaltung und Eliminierung der freien Schiffschen Basen beobachten; und gerade diese Konkurrenz ist für gute π -Acceptor-Liganden charakteristisch²⁶). Es dürfte sich aber um starke N-M-Donorbindungen handeln, da die komplexgebundenen Schiffschen Basen vor der Spaltung der Metall-Stickstoff-Bindungen fragmentiert werden.

B. Tricarbonyl-triphenylphosphin-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe

Darstellung und Eigenschaften

Kocht man die Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe 7-9 mit überschüssigem Triphenylphosphin mehrere Stunden in Toluol unter Rückfluß, so erhält man nach Gl. (3a) unter Eliminierung einer weiteren CO-Gruppe die Tricarbonyl-triphenylphosphin-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe 11-13, z.B.:

Nach dieser Methode sind jedoch nur die entsprechenden Komplexe mit Molybdän als Zentralmetall in hohen Ausbeuten zugänglich. Für die Darstellung der analogen Verbindungen von Chrom und Wolfram arbeitet man besser nach folgendem, von den Tricarbonyl-tris(acetonitril)-metall(0)-Komplexen 14 und 15²⁷⁾ ausgehenden "Ein-topfverfahren" (Gl. (3b)):

(CO)₃M(C 14, 1	H ₃ CN) ₃ 1 5	+ P(C ₆ H ₅) ₃ +	Sb		- 3 CH ₃ CN	(C ₆ H ₅) ₃ P "	н Сн ₃ с-н
	м			ĊH3		cor `co co	`СН ₃
14,11	Cr					11b 13b	(3b)
15,13	w						(02)

Die intensiv farbigen, diamagnetischen Komplexe 11b-13b zersetzen sich bei Luftzutritt langsam und sind, besonders in gelöster Form, nur unter Stickstoffschutz haltbar (Tab. 6).

Infrarot-Spektren

Im Rahmen unserer Untersuchungen interessierte in erster Linie die Position des $P(C_6H_5)_3$ -Liganden im Koordinationsoktaeder. Neben der asymmetrischen *cis*-Anordnung 16 sind die *trans*-Anordnungen 17 und 18 mit der Symmetrie C_s möglich. Da für alle drei Strukturen je drei IR-aktive v_{CO} -Schwingungen zu erwarten sind, ist eine Entscheidung zwischen 16, 17 und 18 aufgrund der Anzahl der IR-aktiven Schwingungen nicht zu treffen. Die Verwendung der Tris(acetonitril)-Komplexe 14 und 15, die *all-cis*-Struktur besitzen ²⁸), beim "Eintopfverfahren" sowie die Beobachtung, daß die Substitution einer zu einem starken Donorliganden *trans*-ständigen CO-Gruppe aus elektronischen Gründen in der Regel nicht eintritt ²⁹⁻³¹), gibt allerdings zu der Vermutung Anlaß, daß auch in den Komplexen 11b–13b die Liganden L₁L₂ und L₃ in *cis*-Stellung zueinander stehen.

²⁷⁾ D. P. Tate, W. R. Knipple und J. M. Augl, Inorg. Chem. 1, 433 (1962).

- 28) B. L. Ross, J. G. Grasselli, W. M. Ritchey und H. D. Kaesz, Inorg. Chem. 2, 1023 (1963).
- 29) E. W. Abel und G. Wilkinson, J. chem. Soc. [London] 1959, 1501.
- 30) M. H. B. Stiddard, J. chem. Soc. [London] 1963, 756.
- 31) L. W. Houk und G. R. Dobson, J. chem. Soc. [London] 1966, 317.

Elektronenspektren

Die Elektronenspektren der Komplexe 11b–13b zeigen große Ähnlichkeit mit denen der Verbindungen 7–9. Bei größenordnungsmäßiger Übereinstimmung der molaren Extinktionskoeffizienten ε_1 und ε_2 sind die den Anregungsenergien der farbbestimmenden Übergänge entsprechenden Frequenzen bathochrom um mindestens 3200/cm gegenüber den Ausgangsverbindungen 7–9 verschoben (Tab. 7).

¹H-NMR-Spektren

In den ¹H-NMR-Spektren sowohl der freien Schiffschen Base **3b** als auch der Metallkomplexe **7b**–**9b** erscheinen die Protonen der enantiotopen³²⁾ Methylgruppen des Isopropylrestes infolge Kopplung mit dem H-Atom der CH-Gruppe in Form eines Dubletts. Für die trisubstituierten Verbindungen **11b**–**13b** kommen, wie erwähnt, die *cis*- und *trans*-Strukturen **16** bzw. **17** und **18** in Frage, die mit Hilfe der Kernresonanzspektroskopie unterschieden werden können. Aufgrund der Symmetrieebenen in **17** und **18** sind die beiden Methylgruppen des Isopropylrestes enantiotrop. Sie sollten im ¹H-NMR-Spektrum, wie im Falle von **3b** und **7b**–**9b**, nur jeweils ein Dublett ergeben. In der asymmetrischen Struktur **16** dagegen sind die beiden *gem.*-Methylgruppen des Isopropylrestes diastereotop³²⁾ und damit magnetisch nichtäquivalent. Im ¹H-NMR-Spektrum sollten daher zwei Dubletts auftreten³³⁾.

Der Bereich der Methylprotonen in den ¹H-NMR-Spektren der Komplexe **11b** bis **13b** enthält jeweils zwei Dubletts (Tab. 8). Im 60-MHz-Spektrum von **13b** besitzen die vier Signale annähernd gleiche Intensität und sind nahezu äquidistant. Die Zuordnung zusammengehöriger Linienpaare und die Bestimmung der Kopplungskonstante J_{CH_3-CH} zu 5.8 Hz gelang durch Aufnahme eines Spektrums bei 100 MHz.

Das Auftreten der magnetischen Nichtäquivalenz in den Spektren der Komplexe 11b-13b beweist die *cis*-Stellung der drei CO-Liganden. Die trisubstituierten Verbindungen 11b-13b gehören damit dem Verbindungstyp 2 an. Versuche, Komplexe dieser Art in die optischen Antipoden zu spalten, sind im Gange.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Hilfe, Herrn Dr. J. Müller, Technische Universität München, für die Aufnahme der Massenspektren und Herrn Dr. G. Herzog, Universität Regensburg, für die Aufnahme der Elektronenspektren.

³²⁾ K. Mislow, Einführung in die Stereochemie, S. 68, Verlag Chemie GmbH, Weinheim/ Bergstr. 1967.

³³⁾ M. v. Gorkom und G. E. Hall, Quart. Rev. (chem. Soc., London) 22, 14 (1968).

Beschreibung der Versuche

Alle Arbeiten wurden in Stickstoffatmosphäre durchgeführt. Die verwendeten Lösungsmittel waren getrocknet und vor Luftzutritt geschützt. — Die Elektronenspektren der Verbindungen wurden in Uvasolen der Fa. E. Merck, Darmstadt, mit einem Cary-14-Recording-Spectrophotometer aufgenommen, die IR-Spektren mit einem Perkin-Elmer-Infrarotgitterspektrometer Modell 325.

1. Allgemeine Vorschrift zur Darstellung der Schiffschen Basen des Pyridin-carbaldehyds-(2)(3a-d): Äquimolare Mengen destillierten Pyridin-carbaldehyds- $(2)^{34}$ (Fraktion 75 bis 76°/18 Torr) und reinen Amins werden gemischt und 30 Min. bei 80° gerührt. Anschließend wird Toluol zugesetzt (5 ccm/mMol) und das entstandene Reaktionswasser azeotrop entfernt. Das als zähes Öl anfallende Kondensationsprodukt nimmt man in Äther auf und trocknet es über wasserfreiem Na₂SO₄. Mehrmaliges Umkristallisieren bei Temperaturen zwischen -10 und -80° führt zu den reinen Schiffschen Basen 3a-d, die entweder als farblose, nadelförmige Kristalle oder als blaßgelbe, zähe Öle anfallen.

2. Allgemeine Vorschrift zur Darstellung der Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)metall(0)-Komplexe (7-9): 10 mMol der Hexacarbonyle von Chrom, Molybdän bzw. Wolfram (4-6) und 10 mMol der entsprechenden Schiffschen Base des Pyridin-carbaldehyds-(2) (3a - d) werden in 60 ccm Benzol gelöst und in einer Tauchlampenapparatur mit Innenkühlung bis zur Abspaltung von 200% CO der Bestrahlung mit ultraviolettem Licht³⁵)

							-
Ver- bindung	Summenformel	MolGew. ^{a)} (osmometr. in Benzol)		Ana C	alysen H	werte N	М
7a	$C_{11}H_8N_2O_4Cr$	Ber. 284.2 Gef. 284	Ber. Gef.	46.49 46.63	2.84 2.93	9.86 9.82	18.30 17.83
7 b	$\mathrm{C_{13}H_{12}N_2O_4Cr}$	Ber. 312.2 Gef. 310	Ber. Gef.	50.01 50.16	3.87 4.05	8.97 9.08	16.65 16.32
7c	$\mathrm{C_{16}H_{16}N_2O_4Cr}$	Ber. 352.3 Gef. 360	Ber. Gef.	54.55 54.61	4.58 4.68	7.95 8.08	14.76 15.13
7d	$\mathrm{C_{16}H_{10}N_{2}O_{4}Cr}$	Ber. 346.3 Gef. 347	Ber. Gef.	55.50 55.69	2.91 3.01	8.09 8.03	15.02 15.09
8a	$C_{11}H_8N_2O_4Mo$	Ber. 328.1 Gef. 337	Ber. Gef.	40.26 40.32	2.46 2.37	8.54 8.60	
8b	$\mathrm{C_{13}H_{12}N_{2}O_{4}Mo}$	Ber. 356.2 Gef. 359	Ber. Gef.	43.85 44.14	3.40 3.50	7.86 7.78	
8 d	C ₁₆ H ₁₀ N ₂ O ₄ Mo	Ber. 390.2 Gef. 398	Ber. Gef.	49.25 49.42	2.58 2.69	7.18 6.90	
8e	$\mathrm{C_{10}H_6N_2O_5Mo}$	Ber. 330.1 Gef. 337	Ber. Gef.	36.38 36.65	1.83 1.88	8.49 8.54	
9a	$C_{11}H_8N_2O_4W$	Ber. 416.0 Gef. 417	Ber. Gef.	31.76 31.99	1.94 2.02	6.73 6.82	
9b	$\mathrm{C_{13}H_{12}N_{2}O_{4}W}$	Ber. 444.1 Gef. 445	Ber. Gef.	35.16 35.42	2.72 2.83	6.31 6.27	
9d	$C_{16}H_{10}N_2O_4W$	Ber. 478.1 Gef. 492	Ber. Gef.	40.17 40.24	2.19 2.48	5.86 5.91	

Tab. 1. Analytische Daten der Tetracarbonyl-(pyridin-carbaldehyd-(2)-*imin*)-metall(0)-Komplexe (7-9)

a) Knauer-Dampfdruckosmometer.

34) Präparat der Fa. Fluka, Buchs (Schweiz).

35) Hochdruckbrenner HPK 125 Watt, BA 15D/Typ 57203 B der Fa. Philips.

ausgesetzt. Die undurchsichtige karminrote bis tiefviolette Lösung wird eingedampft. Der harte, krustige Rückstand wird dreimal aus Äther/n-Hexan umgefällt, dann in einem siedenden Gemisch aus Äthanol/Methylenchlorid (5:1) gelöst und durch langsames !Abkühlen auf -35° zur Kristallisation gebracht. Analysenrein erhält man die Verbindungen, wenn man sie an einer wassergekühlten, mit Al₂O₃/Benzol³⁶) beschickten Chromatographie-Säule reinigt und anschließend aus Äthanol/Methylenchlorid umkristallisiert. 24stdg. Trocknen am Hochvak. bei 50-65° ist notwendig, da die Verbindungen hartnäckig Lösungsmittel festhalten.

Verbindung	Ausb. (%, bez. auf 4-6)	Schmp. (Heizblock, unkorrigiert)	Eigenfarbe	Metallglanz
7a	96	126—127°	pechschwarz	stahlblau
7 b	93	121°	olivgrün	grün
7c	97	275° (Zers.)	blauschwarz	stahlblau
7 d	87	261° (Zers.)	goldbraun	bronze
8a	89	128°	karminrot	grün
8b	90	135°	rostfarben	grün
8d	96	152° (Zers.)	braunrot	bronze
8e	84	158° (Zers.)	blaugrün	grün
9a	98	164°	goldbraun	gold
9 b	83	154°	smaragdgrün	grün
9d	91	174° (Zers.)	olivgrün	grün

Tab. 2. Ausbeuten und Eigenschaften der Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe (7-9)

Tab. 3. IR-Spektren der Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe (7-9) im Bereich der v_{CO-} und der $v_{C=N}$ -Schwingungen^{a)}

Verbindung		v _{CO} -Frequer	v _{C=N} -Frequenzen freier Metall- Ligand komplex			
	2008 s	1910 vs	1891 s	1837 s	1638 vs	1608 w
7 b	2008 s	1810 vs	1885 s	1834 s	1640 vs	1607 w
7c	2007 s	1907 vs	1887 s	1828 s	1645 vs	1606 w
7 d	2006 s	1911 vs, sh, l	br ъ)	1843 s	1660 vs	1602 w
8a	2015 s	1911 vs	1886 s	1836	1638 vs	1608 w
8 b	2020 s	1915 vs, sh	ј ъ)	1844 s	1640 vs	1608 w
8 d	2014 s	1915 v s	1888 s	1842 s	1660 vs	1604 w
8e	2015 s	1915 vs	1889 s	1840 s	c)	1604 w
9a	2007 s	1902 vs, sh	ъ)	1835 s	1638 vs	1605 w
9b	2006 s	1908 vs, sh	ъ)	1835 s	1640 vs	1596 w
9d	2008 s	1901 vs	1880 s	1831 s	1660 vs	1607 w

a) in cm⁻¹; Chloroform-Lösung.

b) nur als Schulter erkennbar.

c) eindeutige Zuordnung nicht möglich¹⁶⁾.

w = schwach, s = stark, vs = sehr stark, sh = Schulter, br = breit.

36) Aluminiumoxid W 200 neutral (4% Wasser, Akt. II) der Fa. Woelm, Eschwege.

	v ₁	ν2	v1	v ₂	٧I	ν2
erbindung	ε ₁	\$2 [ε ₁	ε2	ε ₁	ε2
	11-1	lexali	Ben	1201	Ace	ton
7a	16450	24890	17790	25610	19810	
	1924	1172	7170	3650	5 580	
7 b	16450	25610	17860	25900	19 340	
	1915	1875	4645	2735	3 4 4 0	
7c	16450	25020	17860	25790	19400	
	2575	2675	5 200	3160	3008	
7 d	15550	23980	16620	25810	18000	
	2 380	1750	6220	3 542	5108	
8a	17380	26100	18970	26860	20610	
	2236	990	8 0 6 0	3 500	6 6 6 6 0	
8b	17480	26380	19040	26970	20960	26040
	2355	1012	3 608	1675	6049	2890
8d	16850	25980	17700	a)	19350	
	2483	1285	6010		5540	
8e	ь)		18 3 2 0	26740	20370	25840
			6 4 9 0	3 040	9 0 00	3 800
9a	17200	26120	18450	26830	20100	
	1815	1 2 5 0	4 600	2260	8 3 0 0	
9b	17330	26 300	18 500	27000	20130	
	2100	650	9 5 3 0	3618	7155	
9d	16930	26220	18220	26950	20060	
	2 3 0 0	1230	7200	3060	8 600	

Tab. 4. Frequenzen $v[cm^{-1}]$ und molare Extinktionskoeffizienten $\varepsilon [l/Mol \cdot cm]$ der Absorptionsmaxima der Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe (7-9)

a) nur als Schulter angedeutet.

b) in n-Hexan unlöslich.

3. Tetracarbonyl-(pyridin-aldoxim-(2))-molybdän(0) (8e): 10 mMol (2.64 g) Molybdänhexacarbonyl (5) und 10 mMol (1.22 g) Pyridin-aldoxim-(2)³⁴⁾ (3e) werden in einem Gemisch aus 60 ccm Äthanol und 15 ccm Norbornadien gelöst und 5 Stdn. unter Rückfluß gekocht. Nach dem Entfernen flüchtiger Anteile i. Wasserstrahlvak. wird das ölige, rotbraune Rohprodukt in 5 ccm Methylenchlorid aufgenommen und an Silicagel³⁷⁾ mit Benzol als Laufmittel von Nebenprodukten abgetrennt. Umkristallisation der in der zweiten von insgesamt drei wandernden Zonen enthaltenen Substanz aus 20 ccm heißem Äthanol liefert stahlblaue Nadeln von 8e.

4. Allgemeine Vorschrift zur Darstellung der Tricarbonyl-triphenylphosphin-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe (11b-13b)

Variante A: 10 mMol der Tetracarbonyl-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe 7b-9b und 13 mMol (3.41 g) Triphenylphosphin werden in 50 ccm Toluol gelöst und solange unter Rückfluß gekocht, bis sich in einer mit der Apparatur über ein Stocksches Ventil verbundenen Gasbürette die berechnete Menge (10 mMol) Kohlenmonoxid gesammelt hat. Anschließend zieht man das Lösungsmittel ab und entfernt überschüssiges Triphenylphosphin durch 20stdg. Extraktion mit siedendem Cyclohexan. Umkristallisation aus Aceton führt zu

³⁷⁾ Silicagel 0.05 - 0.20 mm der Fa. Merck, Darmstadt; bei 150° ausgeheizt und N₂-gesättigt.

	1 aU. J.	odenocerni	VIICH ACL TOTA	מלח-ואווטטושים	וחוון-כמו טמוטכ	1-(1)1111-(2)-n(1)		مرار – ا) avaidi	<i>(</i>)	
Verbindung	<i>m/e</i> -Werte: rel. Int. [%]	+[M]	[M]+-CO	[M]+-2 CO	[M] ⁺ -3 CO	[M] ⁺ 4 CO (= [M*] ⁺)	[M*]+-31	[M*]+-R	[M-NC ₅ H ₄] ⁺	× ×
7а		284	256	228	200	172	1	157	130	52
		20	7	2	18	100		10	41	37
7b		312	284	256	228	200	ł	157	ł	52
		10	1	1	10	58		12		33
7c		352	1	Ι	268	240		157	130	52
		15			19	100		14	43	46
7d		346	318	290	262	234		c)	130	52
		18	1	2	33	55			24	100
8a		330	302	274	246	218		I	176	98
		39	50	44	72	72			34	100
8b		358	330	302	274	246	215	203	176	98
		55	25	74	83	100	70	25	52	36
8 d		392 d)	364	I	308	280		1	I	1
9a		416	388	360	332	304		Į	c)	184
		40	33	53	19	100				12
9 b		444	416	388	360	332	301	289	262	ł
		40	28	100	72	53	74	28	48	
P 6		478	450	422	294	266		289	262	184
		34	80	10	43	100		19	60	23
a) Gerät Atlas C	H 4; Ionenquelle T	04; nominal	e Elektronenenerg	gie P = 50 eV.						

a) Gerät Atlas CH 4; Ionenquelle 1U4; nommare Literation Lucation M^+ = $[M]^+ - 4 CO; M^+ = Cr^+, Mo^+ bzw. W^+$. b) $[M]^+ = Molkkii-Ion; [M^+]^+ = [M]^+ - 4 CO; M^+ = Cr^+, Mo^+ bzw. W^+$. c) eindeutige Zuordnung nicht möglich. d) Probe zersetz sich während der Aufnahme des Spektrums; deshalb können die relativen Intensitäten der Peaks nicht angegeben werden.

den analysenreinen Komplexen 11b-13b. Die Verbindungen sind in n-Hexan und Benzol unlöslich und in Methanol sehr schlecht löslich. Die Löslichkeiten in heißem Tetrahydrofuran und in siedendem Aceton reichen für Reinigungsoperationen aus.

Tab. 6. Darstellung und Eigenschaften der Tricarbonyl-triphenylphosphin-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe (11b-13b)

Ver- bindung	Darst. (Variante)	Ausb. (%)	Schmp. (Heizblock, unkorrigiert)	Summenformel (MolGew.)		Anal C	ysenw H	erte N	м
116	В	57	122° blaugrüne Nadeln	C ₃₀ H ₂₇ N ₂ O ₃ PCr (546.5)	Ber. Gef.	65.93 66.14	4.98 4.98	5.13 5.15	9.51 9.42
1 2 b	A	9 8	198° (Zers.) lilafarben, feinkristallin	C ₃₀ H ₂₇ N ₂ O ₃ PMo (590.5)	Ber. Gef.	61.02 61.15	4.61 4.52	4.74 4.79	
13b	В	63	188° (Zers.) violette Nadeln	C ₃₀ H ₂₇ N ₂ O ₃ PW (678.4)	Ber. Gef.	53.10 53.08	3.99 4.04	4.13 4.42	

Tab. 7. v_{CO} -Schwingungen [cm⁻¹, aufgenommen in KBr] sowie Frequenzen v[cm⁻¹] und molare Extinktionskoeffizienten $\in [l/Mol \cdot cm^{-1}]$ der Absorptionsmaxima der Tricarbonyltriphenylphosphin-(pyridin-carbaldehyd-(2)-imin)-metall(0)-Komplexe (11b-13b) [in Aceton-Lösung]

Verbindung	۷Ce	o-Freque	nzen	ν	ε
11b	1901 vs	1813 s	1781 vs	16000	2785
12 b	1906 vs	1812 s	1778 vs	17750	3090
13b	1935 vs	18 4 7 s	1815 vs	17100	3040

s = stark, vs = schr stark.

Tab. 8. 1H-NMR-Parameter von (Pyridin-carbaldehyd-(2)-imin)-Komplexena)

Verbindung	τ [in ppm] ^{c)} [Dublett]	JH3C-CH [in Hz]	Lösungsmittel
3b	8.77	6	Aceton-d ₆
7 b	8.75	6.5	Pyridin-d ₅
11 b	8.70 8.40	6 6	Pyridin-d5
8 b	8.87	6.5	Aceton-d ₆
12b	8.37 8.67	6 6	Pyridin-d5
9b	8.40	6.5	Pyridin-d5
13b	8.47 8.53	6 6	Dimethylsulfoxid-d ₆
13bb)	8.52 8.58	5.8 5.8	Dimethylsulfoxid-d ₆

a) Gerät Varian T 60; Betriebsfrequenz 60 MHz.
b) Gerät Varian XL-100; Betriebsfrequenz 100 MHz.

c) gegen int. TMS als Standard,

Variante B: 10 mMol der Tricarbonyl-tris(acetonitril)-metall(0)-Komplexe 14 bzw. 1527) werden in 60 ccm Äther gelöst und bei -10° unter kräftigem Rühren tropfenweise mit einer Lösung von 13 mMol (1.92 g) der Schiffschen Base 3b sowie 13 mMol (3.41 g) Triphenylphosphin in 40 ccm Äther versetzt. Die Farbe der ursprünglich blaßgelben Lösung schlägt sofort nach violett um. Nach 1 stdg. Rühren bei Raumtemperatur entfernt man das Lösungsmittel bei vermindertem Druck und extrahiert den tiefrot bis violett gefärbten öligen Rückstand zur Entfernung des überschüssigen Liganden 12 Stdn. mit siedendem Cyclohexan. Das Rohprodukt wird nun in 5 ccm Tetrahydrofuran suspendiert und durch Chromatographie an einer 2 m langen wassergekühlten Silicagel-Säule³⁷) mit Tetrahydrofuran als Laufmittel aufgetrennt und gereinigt. Nach anschließender Umkristallisation aus Aceton

und mehrstündigem Trocknen am Hochvak. bei 50-60° sind die in metallglänzenden Nadeln

anfallenden Verbindungen 11b und 13b analysenrein.

[392/71]